MATH 103B – Discussion Worksheet 6 May 25, 2023

Topics: Finite extensions and algebraic closures (Judson 21.1) When K is a field, let \overline{K} denote its algebraic closure.

Problem 1. Let F be a field. Prove $\overline{\overline{F}} = \overline{F}$. That is, if α is a root of some polynomial with coefficients from \overline{F} , then α is also a root of some polynomial over F. In other words, the algebraic closure of an algebraically closed field is itself.

Hint: Instead of considering any particular polynomial, use the following fact from the previous homework (Problem 21.5.14): Let K be an algebraic extension of E, and E an algebraic extension of F. Then K is algebraic over F.

Problem 2. Prove that if E is a proper field extension of \overline{F} , then E is transcendental over F.

Hint: Use Problem 1.

Problem 3. Prove that if F is algebraically closed, then a polynomial of degree n has exactly n roots (counting multiplicities). *Hint*: Induction.

Problem 4. Prove that there is no intermediate extension for $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. That is, there does not exist a field K such that $\mathbb{Q} \subsetneq K \subsetneq \mathbb{Q}(\sqrt[3]{2})$. *Hint*: Use Theorem 21.17 from Judson.

Problem 5. Find a basis for the field extension $K = \mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2}, \zeta_3\sqrt[3]{2})$ over \mathbb{Q} , where ζ_3 is a primitive third root of unity. What is $[K : \mathbb{Q}]$? Which polynomial has K as its splitting field?

Problem 6. Find 2 generators α and β so that $\mathbb{Q}(\alpha, \beta)$ is the splitting field of the polynomial $x^n - a$ over \mathbb{Q} where a is square free (i.e. if $n^2 | a$, then n^2 is a unit). *Hint*: Use Problem 5 for inspirations.