MATH 103B - Discussion Worksheet 6
 May 25, 2023

Topics: Finite extensions and algebraic closures (Judson 21.1)
When K is a field, let \bar{K} denote its algebraic closure.
Problem 1. Let F be a field. Prove $\overline{\bar{F}}=\bar{F}$. That is, if α is a root of some polynomial with coefficients from \bar{F}, then α is also a root of some polynomial over F. In other words, the algebraic closure of an algebraically closed field is itself.
Hint: Instead of considering any particular polynomial, use the following fact from the previous homework (Problem 21.5.14): Let K be an algebraic extension of E, and E an algebraic extension of F. Then K is algebraic over F.

Problem 2. Prove that if E is a proper field extension of \bar{F}, then E is transcendental over F.
Hint: Use Problem 1.
Problem 3. Prove that if F is algebraically closed, then a polynomial of degree n has exactly n roots (counting multiplicities).
Hint: Induction.
Problem 4. Prove that there is no intermediate extension for $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. That is, there does not exist a field K such that $\mathbb{Q} \subsetneq K \subsetneq \mathbb{Q}(\sqrt[3]{2})$.
Hint: Use Theorem 21.17 from Judson.
Problem 5. Find a basis for the field extension $K=\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3} \sqrt[3]{2}, \zeta_{3}^{2} \sqrt[3]{2}\right)$ over \mathbb{Q}, where ζ_{3} is a primitive third root of unity. What is $[K: \mathbb{Q}]$? Which polynomial has K as its splitting field?

Problem 6. Find 2 generators α and β so that $\mathbb{Q}(\alpha, \beta)$ is the splitting field of the polynomial $x^{n}-a$ over \mathbb{Q} where a is square free (i.e. if $n^{2} \mid a$, then n^{2} is a unit).
Hint: Use Problem 5 for inspirations.

